AccueilGroupesDiscussionsPlusTendances
Avez-vous vérifié SantaThing, la tradition de donation de LibraryThing ?
décliner
Ce site utilise des cookies pour fournir nos services, optimiser les performances, pour les analyses, et (si vous n'êtes pas connecté) pour les publicités. En utilisant Librarything, vous reconnaissez avoir lu et compris nos conditions générales d'utilisation et de services. Votre utilisation du site et de ses services vaut acceptation de ces conditions et termes
Hide this

Résultats trouvés sur Google Books

Cliquer sur une vignette pour aller sur Google Books.

Chargement...

A Practitioner’s Guide to Resampling for Data Analysis, Data Mining, and…

par Phillip Good

MembresCritiquesPopularitéÉvaluation moyenneDiscussions
1Aucun6,173,537AucunAucun
"Distribution-free resampling methods--permutation tests, decision trees, and the bootstrap--are used today in virtually every research area. A Practitioner's Guide to Resampling for Data Analysis, Data Mining, and Modeling explains how to use the bootstrap to estimate the precision of sample-based estimates and to determine sample size, data permutations to test hypotheses, and the readily-interpreted decision tree to replace arcane regression methods. Highlights Each chapter contains dozens of thought provoking questions, along with applicable R and Stata code Methods are illustrated with examples from agriculture, audits, bird migration, clinical trials, epidemiology, image processing, immunology, medicine, microarrays and gene selection Lists of commercially available software for the bootstrap, decision trees, and permutation tests are incorporated in the text Access to APL, MATLAB, and SC code for many of the routines is provided on the author's website The text covers estimation, two-sample and k-sample univariate, and multivariate comparisons of means and variances, sample size determination, categorical data, multiple hypotheses, and model building Statistics practitioners will find the methods described in the text easy to learn and to apply in a broad range of subject areas from A for Accounting, Agriculture, Anthropology, Aquatic science, Archaeology, Astronomy, and Atmospheric science to V for Virology and Vocational Guidance, and Z for Zoology. Practitioners and research workers and in the biomedical, engineering and social sciences, as well as advanced students in biology, business, dentistry, medicine, psychology, public health, sociology, and statistics will find an easily-grasped guide to estimation, testing hypotheses and model building"--Back cover.… (plus d'informations)
Récemment ajouté parjukofyork

Aucun.

Aucun
Chargement...

Inscrivez-vous à LibraryThing pour découvrir si vous aimerez ce livre

Actuellement, il n'y a pas de discussions au sujet de ce livre.

Aucune critique
aucune critique | ajouter une critique
Vous devez vous identifier pour modifier le Partage des connaissances.
Pour plus d'aide, voir la page Aide sur le Partage des connaissances [en anglais].
Titre canonique
Titre original
Titres alternatifs
Date de première publication
Personnes ou personnages
Lieux importants
Évènements importants
Films connexes
Prix et distinctions
Épigraphe
Dédicace
Premiers mots
Citations
Derniers mots
Notice de désambigüisation
Directeur(-trice)(s) de publication
Courtes éloges de critiques
Langue d'origine
DDC/MDS canonique

Références à cette œuvre sur des ressources externes.

Wikipédia en anglais

Aucun

"Distribution-free resampling methods--permutation tests, decision trees, and the bootstrap--are used today in virtually every research area. A Practitioner's Guide to Resampling for Data Analysis, Data Mining, and Modeling explains how to use the bootstrap to estimate the precision of sample-based estimates and to determine sample size, data permutations to test hypotheses, and the readily-interpreted decision tree to replace arcane regression methods. Highlights Each chapter contains dozens of thought provoking questions, along with applicable R and Stata code Methods are illustrated with examples from agriculture, audits, bird migration, clinical trials, epidemiology, image processing, immunology, medicine, microarrays and gene selection Lists of commercially available software for the bootstrap, decision trees, and permutation tests are incorporated in the text Access to APL, MATLAB, and SC code for many of the routines is provided on the author's website The text covers estimation, two-sample and k-sample univariate, and multivariate comparisons of means and variances, sample size determination, categorical data, multiple hypotheses, and model building Statistics practitioners will find the methods described in the text easy to learn and to apply in a broad range of subject areas from A for Accounting, Agriculture, Anthropology, Aquatic science, Archaeology, Astronomy, and Atmospheric science to V for Virology and Vocational Guidance, and Z for Zoology. Practitioners and research workers and in the biomedical, engineering and social sciences, as well as advanced students in biology, business, dentistry, medicine, psychology, public health, sociology, and statistics will find an easily-grasped guide to estimation, testing hypotheses and model building"--Back cover.

Aucune description trouvée dans une bibliothèque

Description du livre
Résumé sous forme de haïku

Vos raccourcis

Couvertures populaires

Évaluation

Moyenne: Pas d'évaluation.

Est-ce vous ?

Devenez un(e) auteur LibraryThing.

 

À propos | Contact | LibraryThing.com | Respect de la vie privée et règles d'utilisation | Aide/FAQ | Blog | Boutique | APIs | TinyCat | Bibliothèques historiques | Critiques en avant-première | Partage des connaissances | 152,568,575 livres! | Barre supérieure: Toujours visible