AccueilGroupesDiscussionsPlusTendances
Site de recherche
Ce site utilise des cookies pour fournir nos services, optimiser les performances, pour les analyses, et (si vous n'êtes pas connecté) pour les publicités. En utilisant Librarything, vous reconnaissez avoir lu et compris nos conditions générales d'utilisation et de services. Votre utilisation du site et de ses services vaut acceptation de ces conditions et termes.

Résultats trouvés sur Google Books

Cliquer sur une vignette pour aller sur Google Books.

Chargement...

Newton's method applied to two quadratic equations in C[superscript 2] viewed as a global dynamical system

par John H. Hubbard

MembresCritiquesPopularitéÉvaluation moyenneDiscussions
2Aucun5,283,104AucunAucun
The authors study the Newton map $N:mathbb{{C}}^2rightarrowmathbb{{C}}^2$ associated to two equations in two unknowns, as a dynamical system. They focus on the first non-trivial case: two simultaneous quadratics, to intersect two conics. In the first two chapters, the authors prove among other things: The Russakovksi-Shiffman measure does not change the points of indeterminancy. The lines joining pairs of roots are invariant, and the Julia set of the restriction of $N$ to such a line has under appropriate circumstances an invariant manifold, which shares features of a stable manifold and a center manifold. The main part of the article concerns the behavior of $N$ at infinity. To compactify $mathbb{{C}}^2$ in such a way that $N$ extends to the compactification, the authors must take the projective limit of an infinite sequence of blow-ups. The simultaneous presence of points of indeterminancy and of critical curves forces the authors to define a new kind of blow-up: the Farey blow-up. This construction is studied in its own right in chapter 4, where they show among others that the real oriented blow-up of the Farey blow-up has a topological structure reminiscent of the invariant tori of the KAM theorem. They also show that the cohomology, completed under the intersection inner product, is naturally isomorphic to the classical Sobolev space of functions with square-integrable derivatives. In chapter 5 the authors apply these results to the mapping $N$ in a particular case, which they generalize in chapter 6 to the intersection of any two conics.… (plus d'informations)

Aucun mot-clé

Aucun
Chargement...

Inscrivez-vous à LibraryThing pour découvrir si vous aimerez ce livre

Actuellement, il n'y a pas de discussions au sujet de ce livre.

Aucune critique
aucune critique | ajouter une critique
Vous devez vous identifier pour modifier le Partage des connaissances.
Pour plus d'aide, voir la page Aide sur le Partage des connaissances [en anglais].
Titre canonique
Titre original
Titres alternatifs
Date de première publication
Personnes ou personnages
Lieux importants
Évènements importants
Films connexes
Épigraphe
Dédicace
Premiers mots
Citations
Derniers mots
Notice de désambigüisation
Directeur de publication
Courtes éloges de critiques
Langue d'origine
DDC/MDS canonique
LCC canonique

Références à cette œuvre sur des ressources externes.

Wikipédia en anglais

Aucun

The authors study the Newton map $N:mathbb{{C}}^2rightarrowmathbb{{C}}^2$ associated to two equations in two unknowns, as a dynamical system. They focus on the first non-trivial case: two simultaneous quadratics, to intersect two conics. In the first two chapters, the authors prove among other things: The Russakovksi-Shiffman measure does not change the points of indeterminancy. The lines joining pairs of roots are invariant, and the Julia set of the restriction of $N$ to such a line has under appropriate circumstances an invariant manifold, which shares features of a stable manifold and a center manifold. The main part of the article concerns the behavior of $N$ at infinity. To compactify $mathbb{{C}}^2$ in such a way that $N$ extends to the compactification, the authors must take the projective limit of an infinite sequence of blow-ups. The simultaneous presence of points of indeterminancy and of critical curves forces the authors to define a new kind of blow-up: the Farey blow-up. This construction is studied in its own right in chapter 4, where they show among others that the real oriented blow-up of the Farey blow-up has a topological structure reminiscent of the invariant tori of the KAM theorem. They also show that the cohomology, completed under the intersection inner product, is naturally isomorphic to the classical Sobolev space of functions with square-integrable derivatives. In chapter 5 the authors apply these results to the mapping $N$ in a particular case, which they generalize in chapter 6 to the intersection of any two conics.

Aucune description trouvée dans une bibliothèque

Description du livre
Résumé sous forme de haïku

Discussion en cours

Aucun

Couvertures populaires

Aucun

Vos raccourcis

Évaluation

Moyenne: Pas d'évaluation.

Est-ce vous ?

Devenez un(e) auteur LibraryThing.

 

À propos | Contact | LibraryThing.com | Respect de la vie privée et règles d'utilisation | Aide/FAQ | Blog | Boutique | APIs | TinyCat | Bibliothèques historiques | Critiques en avant-première | Partage des connaissances | 206,275,555 livres! | Barre supérieure: Toujours visible